• ThatWeirdGuy1001@lemmy.world
    link
    fedilink
    arrow-up
    0
    ·
    edit-2
    1 year ago

    I know I’m bad at math but I don’t understand how 2x0=0 but 2^0=1

    How are they different answers when they’re both essentially multiplying 2 by zero?

    Someone with a bigger brain please explain this

    Edit: I greatly appreciate all the explanations but all they’ve done is solidify the fact that I’ll never be good at math 😭

    • jendrik@discuss.tchncs.de
      link
      fedilink
      arrow-up
      0
      ·
      1 year ago

      subtracting one from Exponent means halving (when the base is two):

      2⁴ = 16 2³ = 8 2² = 4 2¹ = 2 2⁰ = 1

      It’s a simple continuation of the pattern and required for mathemarical rules to work.

      • uberrice@feddit.de
        link
        fedilink
        arrow-up
        0
        ·
        edit-2
        1 year ago

        This is confidently wrong.

        3^0 is also 1. 2738394728^0 is also 1.

        Edit: just saw that technically you’re correct - sure.

        IF base 2, Exponent reduction equals to halving - dividing by 2.

        For x^y reducing y by one is equal to dividing by x, then we have the proof it always works.

    • Globulart@lemmy.world
      link
      fedilink
      arrow-up
      0
      ·
      edit-2
      1 year ago

      This isn’t strictly speaking a proof, but it did help me to accept it as it demonstrates the function that makes it 1.

      2^3 = 2x2x2

      2^2 = 2x2

      (23)/(22) = (2x2x2)/(2x2) = 2

      = 2^(3-2)

      In general terms:

      (xa)/(xb) = x^(a-b)

      If a and b are the same number this is x^0 and obviously (xa)/(xa) is one because anything divided by itself is 1.

      Hope that helps

        • Flumsy@feddit.de
          link
          fedilink
          arrow-up
          0
          ·
          1 year ago

          That was pretty complicated, here is a simpler answer I hsve come up with:

          1=(2x2x2)/(2x2x2)=2³/2³=2³⁻³=2⁰

          If that makes sense to you…

  • affiliate@lemmy.world
    link
    fedilink
    arrow-up
    0
    ·
    1 year ago

    for anyone curious, here’s a “constructive” explanation of why a0 = 1. i’ll also include a “constructive” explanation of why rational exponents are defined the way they are.

    anyways, the equality a0 = 1 is a consequence of the relation

    am+1 = ama.

    to make things a bit simpler, let’s say a=2. then we want to make sense of the formula

    2m+1 = 2m • 2

    this makes a bit more sense when written out in words: it’s saying that if we multiply 2 by itself m+1 times, that’s the same as first multiplying 2 by itself m times, then multiplying that by 2. for example: 23 = 22 • 2, since these are just two different ways of writing 2 • 2 • 2.

    setting 20 is then what we have to do for the formula to make sense when m = 0. this is because the formula becomes

    20+1 = 20 • 21.

    because 20+1 = 2 and 21 = 2, we can divide both sides by 2 and get 1 = 20.

    fractional exponents are admittedly more complicated, but here’s a (more handwavey) explanation of them. they’re basically a result of the formula

    (am)n = am•n

    which is true when m and n are whole numbers. it’s a bit more difficult to give a proper explanation as to why the above formula is true, but maybe an example would be more helpful anyways. if m=2 and n=3, it’s basically saying

    (a2)3 = (aa)3 = (aa) • (aa) • (aa) = a2•3.

    it’s worth noting that the general case (when m and n are any whole numbers) can be treated in the same way, it’s just that the notation becomes clunkier and less transparent.

    anyways, we want to define fractional exponents so that the formula

    (ar)s = aras

    is true when r and s are fractional numbers. we can start out by defining the “simple” fractional exponents of the form a1/n, where n is a whole number. since n/n = 1, we’re then forced to define a1/n so that

    a = a1/n•n = (a1/n)n.

    what does this mean? let’s consider n = 2. then we have to define a1/2 so that (a1/2)2 = a. this means that a1/2 is the square root of a. similarly, this means that a1/n is the n-th root of a.

    how do we use this to define arbitrary fractional exponents? we again do it with the formula in mind! we can then just define

    am/n = (a1/n)m.

    the expression a1/n makes sense because we’ve already defined it, and the expression (a1/n)m makes sense because we’ve already defined what it means to take exponents by whole numbers. in words, this means that am/n is the n-th square root of a, multiplied by itself m times.

    i think this kind of explanation can be helpful because they show why exponents are defined in certain ways: we’re really just defining fractional exponents so that they behave the same way as whole number exponents. this makes it easier to remember the definitions, and it also makes it easier to work with them since you can in practice treat them in the “same way” you treat whole number exponents.