• iii@mander.xyz
    link
    fedilink
    English
    arrow-up
    2
    ·
    edit-2
    1 month ago

    But then you added the requirement of 90% uptime which is isn’t how a grid works.

    I’m referring to the uptime of the grid. Not an individual power source.

    Assume we’ve successfully banned fossil fuels and nuclear, as is the goal of the green parties.

    How much renewable production, and bess, does one need to achieve 90% grid uptime? Or 99% grid uptime?

    If you want a balanced grid, you don’t need to just build for the average day (in production and consumption), you need to build for the worst case in both production and consumption.

    The worst case production in case for renewables, is close to zero for days (example). Meaning you need to size storage appropriatelly, in order to fairly compare to nuclear. And build sufficient production so that surplus is generated and able to be stored.

    If we’re fine with a blackout 10% of the time, I can see solar + bess beating nuclear, price wise. If the goal instead is a reliable grid, then not.

    As an example: take Belgium. As a result of this same idea (solar/wind is cheap!) we ended up with both (1) higher greenhouse gas emissions and (2) costlier energy generation, as we now heavily rely on gas power generation (previously mainly russian, now mainly US LNG) to balance the grid. Previous winter we even had to use kerosene turbine generation to avoid a blackout.

    • Ooops
      link
      fedilink
      English
      arrow-up
      1
      ·
      edit-2
      1 month ago

      How much renewable production, and bess, does one need to achieve 90% grid uptime? Or 99% grid uptime?

      About 115% to 130%. Depending on diversification of renewable sources and locations. The remains are losses in storage and transport obviously.

      But shouldn’t you actual question be: How much storage is needed?

      For a quick summary of those questions you can look here for example…

      • iii@mander.xyz
        link
        fedilink
        English
        arrow-up
        2
        arrow-down
        1
        ·
        1 month ago

        What would 130% grid uptime even look like? 475 days a year without blackout?

        I think we’re talking about different things.

        • Ooops
          link
          fedilink
          English
          arrow-up
          2
          ·
          edit-2
          1 month ago

          130% production on average, with excess being stored, minus losses in conversions, transport and storage = 100% demand covered all the time.

          Or the longer version: For a stable grid I need to cover 100% of the demand in next to real-time. This can be achieved with enough long- and short-term storage, plus some overproduction to account for storage losses. The 115% to 130% production (compared to actual demand) are based on studies for Germany and vary by scenario, with the higher number for the worst case (people strongly resisting all changes to better balance consumption and south Germany keeping up there resistence to diversify by only building solar while blocking wind power).

          The question now is: How much storage do I need? And that answer is varying by much greater amount based on scenario (for example between 50 and 120 GW capacity needed as electrolysis for long term-storage or battery storage between 50GWh and 200GWh).

    • Blue_Morpho@lemmy.world
      link
      fedilink
      English
      arrow-up
      1
      arrow-down
      1
      ·
      1 month ago

      Yes you have to build for worst case. That’s what I already said.

      You are comparing overbuilt nuclear but acting like bess can’t be over built too. That’s why the cost of storage is the only important metric.

      You need an absolute minimum of 2 nuclear reactors to be reliable (Belgium has 7). That doubles the cost of nuclear. But it doesn’t matter because that’s factored in when you look at levelized cost. You look at cost per MWhr. How reliability is achieved doesn’t matter.

      Bess is $200 per MWhr.