• aberrate_junior_beatnik@midwest.social
    link
    fedilink
    English
    arrow-up
    6
    ·
    4 months ago

    My only guess as to what this could mean is that since quantum mechanics is quantum, i.e. discrete, the universe therefore cannot be continuous as the reals are. But this is a category error. Just because you could never find an object that is, say, exactly pi meters long, does not mean that the definition of pi is threatened. There’s nothing infinite that we can observe, but infinity is still a useful concept. And it works both ways; just because quantum mechanics is our best model of the universe doesn’t mean the universe is therefore quantum. 150 years ago everyone believed the universe was like a big clockwork mechanism, perfectly deterministic, because Newtonian physics are deterministic. And who knows, maybe they were right, and we just don’t have the framework to understand it so we have a nondeterministic approximation!

    • themeatbridge@lemmy.world
      link
      fedilink
      English
      arrow-up
      1
      ·
      edit-2
      4 months ago

      We could make an object that is exactly pi meters long. Make a circle of 1 meter in diameter, and then straighten it out. We would not be able to measure the length more accurately than we can calculate it (that might be the largest understatement ever) but to the tolerance with which we could make a 1 meter diameter circle, you should have the same tolerance to the circumference being pi.

      • Donkter@lemmy.world
        link
        fedilink
        English
        arrow-up
        1
        ·
        4 months ago

        I mean, you only need 39 digits of pi to calculate the circumference of a circle with a diameter the size of the universe to the width of a hydrogen atom. So no matter how detailed you get it’s impossible to determine if a circles circumference is anywhere close to exactly pi.

        To ops point, you could set up your thing theoretically and we can math out that it should be pi. But we could not make that object.