Tap for spoiler

The bowling ball isn’t falling to the earth faster. The higher perceived acceleration is due to the earth falling toward the bowling ball.

  • BB84@mander.xyzOP
    link
    fedilink
    English
    arrow-up
    2
    ·
    18 days ago

    even light can stop following null geodesics because the curvature can be too big compared to the wavelength

    Very interesting! How do you study something like this? Is it classical E&M in a curved space time, or do you need to do QED in curved space time?

    Also, are there phenomena where this effect is significant? I’m assuming something like lensing is already captured very well by treating light as point particles?

    • Sasha@lemmy.blahaj.zone
      link
      fedilink
      English
      arrow-up
      2
      ·
      edit-2
      18 days ago

      I’ve only ever done QFT in curved spacetime, but I don’t see any reason why you couldn’t do EM, it’ll be a vaguely similar process. I never actually dealt with any scenarios where the curvature was that extreme, and QFT in a curved background is kinda bizarre and doesn’t always require one to consider the specific trajectories, though you definitely can especially if you’re doing some quantum teleportation stuff. In my area it’s simpler to ignore QED and to just consider a massless scalar field, this gives you plenty of information about what photons do without worrying about polarisations and electrons.

      It’s been a long time since I did any reading on the geometric optics approximation (in the context of GR this is the formal name for light travelling on null geodesics), but for the most part it’s not something you have to consider, even outside of black holes the curvature tends to be pretty tame (that’s why you can comfortably fall into one in sci-fi), so unfortunately I don’t know of any phenomena (in GR) where it’s important. QFT in curved spacetime generally requires you to stay away from large curvatures, otherwise you start entering into the territory of quantum gravity for which there is no accepted theory.

      Outside of GR, it breaks down quite regularly, including I believe, for the classic double slit experiment.

      Edit: Another really cool fact about black holes is that even when you’ve got really large wavelengths, it often doesn’t matter because they get blue shifted to smaller wavelengths once you get close to be horizon.