• ltxrtquq@lemmy.ml
    link
    fedilink
    English
    arrow-up
    3
    ·
    12 hours ago

    A straight line in polar coordinates with the same tangent would be a circle.

    I’m not sure that’s true. In non-euclidean geometry it might be, but aren’t polar coordinates just an alternative way of expressing cartesian?

    Looking at a libre textbook, it seems to be showing that a tangent line in polar coordinates is still a straight line, not a circle.

    • wholookshere@lemmy.blahaj.zone
      link
      fedilink
      English
      arrow-up
      1
      ·
      4 hours ago

      I’m saying that the tangent of a straight line in Cartesian coordinates, projected into polar, does not have constant tangent. A line with a constant tangent in polar, would look like a circle in Cartesian.

      • ltxrtquq@lemmy.ml
        link
        fedilink
        English
        arrow-up
        2
        ·
        3 hours ago

        Polar Functions and dydx

        We are interested in the lines tangent a given graph, regardless of whether that graph is produced by rectangular, parametric, or polar equations. In each of these contexts, the slope of the tangent line is dydx. Given r=f(θ), we are generally not concerned with r′=f′(θ); that describes how fast r changes with respect to θ. Instead, we will use x=f(θ)cosθ, y=f(θ)sinθ to compute dydx.

        From the link above. I really don’t understand why you seem to think a tangent line in polar coordinates would be a circle.