We demonstrate a situation in which Large Language Models, trained to be helpful, harmless, and honest, can display misaligned behavior and strategically deceive their users about this behavior without being instructed to do so. Concretely, we deploy GPT-4 as an agent in a realistic, simulated environment, where it assumes the role of an autonomous stock trading agent. Within this environment, the model obtains an insider tip about a lucrative stock trade and acts upon it despite knowing that insider trading is disapproved of by company management. When reporting to its manager, the model consistently hides the genuine reasons behind its trading decision.

https://arxiv.org/abs/2311.07590

  • Max_Power@feddit.de
    link
    fedilink
    English
    arrow-up
    0
    ·
    edit-2
    1 year ago

    we deploy GPT-4 as an agent in a realistic, simulated environment, where it assumes the role of an autonomous stock trading agent

    This already is total BS. If you know how such language models work you’d never take their responses at face value, even though it’s tempting because they spout their BS so confidently. Always double-check their responses before applying their “knowledge” in the real world.

    The question they try to answer is flawed, no wonder the result is just as bad.

    Before anyone starts crying about my language models opposition: I’m not opposed to LMs or ChatGPT. In fact, I’m running LMs locally because they help me be more productive and I’m a paying ChatGPT customer.