Using regular physics a human scaled up that much they would immediately start to collapse into a pulpy sphere of mostly water, which would further collapse into a star. If you ignored the giant human’s body pull on itself, then you’d have to look at the Earth pull on the flesh of the giant, trying to put what amounts to a giant hand shaped water balloon inside a planets roshe limit probably won’t end well. If we ignore that, then the Earth would be deep inside your hand’s gravitational field, so you probably wouldn’t need to squeeze, just having your giant hand near the Earth would cause it to rip itself apart. If we ignore all the gravity based physics then the question becomes “How would muscles larger than planets actually work?”.
I guess what I’m trying to say here is that to answer your question is “We have to ignore so much physics to make your question even possible that it’s kinda meaningless.” It’s like asking “If ducks were made of cheese how fast could they fly?”
If the Earth were scaled down, could OP destroy it by squeezing it with their hand?
So like a Earth shaped ball made up of the same things as the Earth?
If it were at the same temperature as Earth’s components it’d simply explode since the core of the Earth is well above irons boiling point and is only kept solid and liquid by the pressure. If the ball were cold then no, it’d be a rock. I suppose if the scaled down Earth model were made from roughly analogous materials (iron cored ball of lava with a very thin rock shell) then you could probably crush it quite easily… although you’d basically holding a ball of lava so you’d act quickly to finish crushing it before your hand burned off.
Using regular physics a human scaled up that much they would immediately start to collapse into a pulpy sphere of mostly water, which would further collapse into a star. If you ignored the giant human’s body pull on itself, then you’d have to look at the Earth pull on the flesh of the giant, trying to put what amounts to a giant hand shaped water balloon inside a planets roshe limit probably won’t end well. If we ignore that, then the Earth would be deep inside your hand’s gravitational field, so you probably wouldn’t need to squeeze, just having your giant hand near the Earth would cause it to rip itself apart. If we ignore all the gravity based physics then the question becomes “How would muscles larger than planets actually work?”.
I guess what I’m trying to say here is that to answer your question is “We have to ignore so much physics to make your question even possible that it’s kinda meaningless.” It’s like asking “If ducks were made of cheese how fast could they fly?”
And? Don’t keep me hanging on the cheese ducks. Now I want to know.
Very well explained.
I think a more interesting question might be: If the Earth were scaled down, could OP destroy it by squeezing it with their hand?
So like a Earth shaped ball made up of the same things as the Earth?
If it were at the same temperature as Earth’s components it’d simply explode since the core of the Earth is well above irons boiling point and is only kept solid and liquid by the pressure. If the ball were cold then no, it’d be a rock. I suppose if the scaled down Earth model were made from roughly analogous materials (iron cored ball of lava with a very thin rock shell) then you could probably crush it quite easily… although you’d basically holding a ball of lava so you’d act quickly to finish crushing it before your hand burned off.