The US National Ignition Facility has achieved even higher energy yields since breaking even for the first time in 2022, but a practical fusion reactor is still a long way off
Fusion is not inherently safe. It has significantly higher rate of neutron discharge for the enegy produced which can damage the reactor vessel and potential to cause nonfuel material to become radioactive.
Ontop of any power disruption of the system has the potential for radioactive plasma to escape with nothing even remotely equivalent of a SCRAM to bring it back under control.
The only reason fusion appears safe right now is because its all still developmental phase and any issues are being handwaved as prototyping issues and not treated like the actual potential catastrophes they are.
The total mass of reactants in the fusion chamber is below milligram, some of which is bound in stable isotopes. Even if all of it escaped, it would be far from catastrophic.
The reaction itself cannot run away on its own because it requires a delicate balance in temperature and density, which will be immediately disturbed if there was a breach in containment.
The walls will be activated by neutrons, but short of blowing the reactor up, there’s not much chance of materials escaping in a significant amount to pose a danger.
Fusion is not inherently safe. It has significantly higher rate of neutron discharge for the enegy produced which can damage the reactor vessel and potential to cause nonfuel material to become radioactive.
Ontop of any power disruption of the system has the potential for radioactive plasma to escape with nothing even remotely equivalent of a SCRAM to bring it back under control.
The only reason fusion appears safe right now is because its all still developmental phase and any issues are being handwaved as prototyping issues and not treated like the actual potential catastrophes they are.
The total mass of reactants in the fusion chamber is below milligram, some of which is bound in stable isotopes. Even if all of it escaped, it would be far from catastrophic.
The reaction itself cannot run away on its own because it requires a delicate balance in temperature and density, which will be immediately disturbed if there was a breach in containment.
The walls will be activated by neutrons, but short of blowing the reactor up, there’s not much chance of materials escaping in a significant amount to pose a danger.