While LLMs have been used for… a lot, it seems like this use might be one where it’s not only reliable but it appears to outperform existing methods of image compression. Being able to cram more data into less space tends to lead to interesting developments, so I will be keeping my eye on this.

What do you guys think? Seem like it’s deserving of less hype than I’m giving it? What kind of security holes do you think this could open?

  • EdgeOfToday@lemm.ee
    link
    fedilink
    arrow-up
    0
    ·
    1 year ago

    With a neural network, you wouldn’t be able to mathematically prove that the signal is perfectly recovered 100% of the time for all possible inputs. That is the case with PNG and FLAC. If you’re just listening to music and need a good compression ratio, then sure, it won’t be a big deal if a couple of bits are wrong. But that’s also why we have lossy compression. If the goal is to make signal degradation imperceptible to a human, then you could get a much better compression ratio using neural networks. If it’s truly critical that the signal isn’t corrupted, it would probably be better to just use the original method.

    • person594@feddit.de
      link
      fedilink
      arrow-up
      0
      ·
      1 year ago

      That isn’t really the case; while many neural network implementations make nondeterministic optimizations, floating point arithmetic is in principle entirely deterministic, and it isn’t too hard to get a neural network to run deterministically if needed. They are perfectly applicable for lossless compression, which is what is done in this article.